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Abstract: Photoplethysmographic imaging is an optical solution for non-contact cardiovascu-
lar monitoring from a distance. This camera-based technology enables physiological monitoring
in situations where contact-based devices may be problematic or infeasible, such as ambulatory,
sleep, and multi-individual monitoring. However, automatically extracting the blood pulse wave-
form signal is challenging due to the unknown mixture of relevant (pulsatile) and irrelevant
pixels in the scene. Here, we propose a signal fusion framework, FusionPPG, for extracting
a blood pulse waveform signal with strong temporal fidelity from a scene without requiring
anatomical priors. The extraction problem is posed as a Bayesian least squares fusion problem,
and solved using a novel probabilistic pulsatility model that incorporates both physiologically
derived spectral and spatial waveform priors to identify pulsatility characteristics in the scene.
Evaluation was performed on a 24-participant sample with various ages (9–60 years) and body
compositions (fat% 30.0 ± 7.9, muscle% 40.4 ± 5.3, BMI 25.5 ± 5.2 kg·m−2). Experimental
results show stronger matching to the ground-truth blood pulse waveform signal compared to
the FaceMeanPPG (p < 0.001) and DistancePPG (p < 0.001) methods. Heart rates predicted
using FusionPPG correlated strongly with ground truth measurements (r2 = 0.9952). A cardiac
arrhythmia was visually identified in FusionPPG’s waveform via temporal analysis.
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OCIS codes: (100.2960) Image analysis; (170.3880) Medical and biological imaging; (170.1470) Blood or tissue con-

stituent monitoring.
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1. Introduction

Photoplethysmography (PPG) is a safe and inexpensive cardiovascular monitoring technol-
ogy [1]. Using an illumination source and detector, transient fluctuations in illumination in-
tensity pertaining to localized changes in blood volume enable non-invasive probing of vascular
characteristics. Traditionally, PPG is monitored via a contact probe that operates in either trans-
mittance or reflectance mode, where the source and detector are placed on opposite or the same
side of the tissue, respectively. However, this conventional type of monitoring provides hemo-
dynamic information only for a single point, and is an impractical measurement tool in settings
such as ambulatory and multi-individual monitoring.

Recent studies have focused on developing and validating photoplethysmographic imaging
(PPGI) systems [2]. These systems substitute contact-based detectors with a camera and use
non-contact illumination sources, enabling non-contact cardiovascular monitoring from a dis-
tance [3]. The additional visual context can enable functionality such as motion compensation
during exercise [4], multi-individual tracking [10], and spatial perfusion analysis [11]. One ma-
jor challenge in PPGI is the automatic extraction of a blood pulse waveform from the video. De-
coupling the detector from the body causes several challenges, such as illumination variations,
motion changes, and hair occlusion. Furthermore, locations on the body that contain pulsatile
flow are not readily apparent. Identifying pixels representing the skin does not guarantee pul-
satile blood flow, as some areas may be minimally vascularized, or may not contain pulsatile
vessels. In fact, the pulsatile nature of the blood pulse waveform is not fully understood [3, 12].

Existing methods for automatic signal extraction broadly rely on a combination of spatial and
spectral information. The RGB components in cameras with Bayer filters have been leveraged
to identify the blood pulse waveform using independent component analysis [10, 13], Beer-
Lambert modeling [14], and skin composition modeling [15]. However, these methods rely on
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measuring multispectral reflectance values such as RGB, which may not be appropriate in low-
light settings such as sleep monitoring. Furthermore, the tissue penetration depth of incident
illumination is wavelength- and tissue-dependent [16]. To solve this problem, some methods
rely only on a single wavelength (or color channel) to extract the signal through spatial analy-
sis [4,11,17]. Regardless of the spectrum chosen, existing methods average the pixel intensities
over chosen areas, such as the facial bounding box [4, 10, 14], predefined facial areas [13, 18],
and facial segmentation [17]. Methods relying on facial tracking may fail due to varying light-
ing conditions, different face-camera perspectives, or from various facial features. Some studies
have recognized the importance of extending PPGI beyond heart rate analysis by analyzing
heart rate variability as an indicator for cardiac function [5, 10, 13, 18], however these studies
use pre-defined areas for extracting the blood pulse waveform, which may not generalize well to
new systems or environmental settings (e.g., other anatomies, non-color imaging systems, etc.).
Some studies have focused on automatic region of interest (ROI) selection which identifies
skin pixels for analysis for more robust signal extraction [6–9]. However these methods rely on
RGB color information for computing ICA [6], chromaticity derivatives [7], and chrominance-
based skin model [8, 9]. Furthermore, each pixel in the ROI are weighted the same, which may
be inconsistent with the underlying physiology. Motivated by the increased performance from
automatic region selection, there is a need for pulsatility identification that can be applied in
settings where color information is not available, such as low light settings (e.g., sleep studies)
or monochromatic camera systems (e.g., for whole-day monitoring).

Here, we propose a spectral-spatial fusion method for extracting a blood pulse waveform
from a set of frames from an arbitrary scene. Our goal was to extract signals that exhibited
both spectral and temporal fidelity, to enable both spectral and temporal analysis. Using phys-
iologically derived a priori spectral and spatial information related to blood pulse waveforms,
our method learns which regions contain the strongest pulsatility based on their physiological
relevance rather than their anatomical location, which enables signal extraction across different
body types. Results across a 24-participant study show that the proposed method generated sig-
nals that exhibited significantly stronger temporal correlation and spectral entropy compared to
existing methods. The framework was presented as a general framework that can be used to aug-
ment existing or new PPGI systems for assessing pulsatility in arbitrary anatomical locations.

2. Methods

The goal of the spectral-spatial fusion model was to extract a clean temporal blood pulse wave-
form signal from a scene. By emphasizing temporal fidelity, not only can summary metrics such
as heart rate be computed, but important temporal fluctuations such as cardiac arrhythmias can
be assessed. The scene is assumed to contain an unknown mixture of relevant regions (i.e., skin
areas which exhibit pulsatility), and irrelevant regions (e.g., background, clothing, non-pulsatile
skin regions, etc.). Given this mixture of regions (input), the system must discover a temporal
PPGI signal (output). Figure 1 provides a graphical overview of the system. Details are provided
below.

2.1. Problem formulation

Let z = z[t] be the (unknown) true blood pulse waveform. Let X = {xi | 1 ≤ i ≤ n} be a set of
absorbance signals, where:

xi = xi (t) ·
∞∑

k=−∞
δ(t − kT ) (1)

where δ is the Dirac delta function, and T is the sampling period. Here, following the Beer-
Lambert law, absorbance is calculated as xi (t) = − log(ri (t)), where ri (t) is the intensity sig-
nal for region i. Each signal xi was detrended using a regularized least squares subtraction
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Fig. 1. Processing pipeline of the proposed signal extraction method. Acquired frames were
converted from reflectance to absorbance and detrended. Spectral-spatial probabilistic prior
maps were computed and used to model the posterior distribution representing the pul-
satility model. Bayesian least-squares optimization was used to generate the blood pulse
waveform signal.

method which heavily emphasizes a smoothness prior [19]. Given the set of measurements X ,
which is a mixture of signals from a scene that are both relevant (e.g., skin) and irrelevant (e.g.,
background, skin folds, hair), the goal is to estimate the “true” blood pulse signal using an
intelligently weighted subset of regions that contain pulsatility. This inverse problem can be
formulated as a Bayesian problem, where prior physiology knowledge can be injected into the
model to educate assumptions about the state (specific priors will be discussed in the following
section). Mathematically, it can be solved using the Bayesian least squares formulation [20]:

ẑ = arg min
ẑ

{
E

[
(ẑ − z)T (ẑ − z) | X

]}
(2)

= arg min
ẑ

∫
(ẑ − z)T (ẑ − z)p(z|X )dz (3)

where p(z|X ) is the posterior distribution of state signal z given the measurements X . The
optimal solution is found by setting ∂/∂ẑ = 0:

∂

∂ẑ

∫
(ẑ − z)T (ẑ − z)p(z|X )dz = 0 (4)

Simplifying:

2
∫

(ẑ − z)p(z|X )dz = 0 (5)
∫

ẑp(z|X )dz −
∫

zp(z|X )dz = 0 (6)

ẑ =
∫

zp(z|X )dz (7)
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Fig. 2. Quasi-periodic nature of a typical blood pulse waveform signal. The periodicity and
dicrotic characteristics of the waveform result in predominantly harmonic frequencies in
the power spectral density.

Thus, to solve this equation, the unknown posterior distribution p(z|X ) must be modeled. This
distribution represents the probability that a state signal z represents the true blood pulse wave-
form given the observed temporal signals X . The posterior distribution can be modeled as a
novel probabilistic pulsatility model, which we approximated using a discrete weighted his-
togram of the observed states [21]:

p̂(z|X ) =

∑ |X |
i=1 Wiδ( |z − xi |)

Y
(8)

where Y is a normalization term such that
∑

k p̂(zk |X ) = 1. The problem then becomes comput-
ing the probabilistic prior Wi for each observed signal xi to determine how well it represents
the true blood pulse waveform. The following subsections propose a solution using a spectral-
spatial model motivated by blood pulse waveform characteristics and vascular physiology.

2.2. Probabilistic pulsatility model

Ideally, p(z|X ) should be a function of the SNR of the estimated temporal signal, since this
provides information about the signal fidelity. However, SNR requires knowing the true signal,
which is unknown at the time of acquisition. A proxy metric for estimating SNR should thus
be computed using prior knowledge of blood pulse waveform characteristics. A spectral-spatial
model is proposed based on the following two observations, which can be leveraged as prior
information in the Bayesian framework presented above:

• Spectral: Clean blood pulse waveforms are quasi-periodic, and are primarily composed
of a weighted sum of a small set of sinusoidal signals (see Fig. 2).

• Spatial: Non-homogeneous skin areas exhibit high variability due to anatomical non-
uniformity (e.g., boundary, skin fold, hair).

For motivation, Fig. 2 shows a typical power spectral density of a clean blood pulse waveform.
The spectral energy is compact, and is primarily composed of two harmonic frequencies. This
indicates the quasi-periodic nature of the blood pulse waveform, and provides rationale for the
spectral model.

In order to compute spectral properties, the normalized 0-DC spectral power distribution for
spatial region i was computed:

Γi ( f ) =
|Fi ( f ) |2∫ |Fi ( f ) |2df

(9)

where Fi ( f ) are the complex-valued Fourier transform frequency coefficients for xi (t) − x̄i (t).
The normalized spectral power (i.e.,

∫
Γi ( f )df = 1) was used to model the relative AC pulsatile

amplitude in the unit-less blood pulse waveforms.
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The quasi-periodic blood pulse waveform is dominated by the fundamental frequency cor-
responding to the heart rate and the first harmonic (see Fig. 2). To quantify this property, the
spectral power exhibited by the fundamental frequency and first harmonic was computed:

hi =

∫ f ∗+Δ f

f ∗−Δ f
Γi ( f )df +

∫ 2 f ∗+Δ f

2 f ∗−Δ f
Γi ( f )df (10)

where f ∗ = arg max f Γi ( f ), and Δ f is the spectral window’s half-width. We used Δ f = 0.2 Hz.
hi was set to 0 for signals whose fundamental frequency was outside of the physiologically
realistic heart rate range. The final “harmonic prior” was computed as:

wharm
i = exp

(−(1 − hi )2

αh

)
(11)

where αh is a tuning parameter. An inverse exponential was used to emphasize small values of
(1 − hi ) (i.e., strong harmonic contributions).

To quantify noise exhibited by the quasi-periodic waveform, the maximum spectral power
response outside of the fundamental heart rate range was found:

qi = max
f

{
1 −

∫ f ∗+Δ f

f ∗−Δ f
Γi ( f )df

}
(12)

The final “noise prior” was computed as:

wnmag
i
= exp

⎛⎜⎜⎜⎜⎝
−q2

i

αq

⎞⎟⎟⎟⎟⎠ (13)

where αq is a tuning parameter. An inverse exponential model was used to emphasize small
values of qi (i.e., low noise).

Local anatomical variations may corrupt any pulsatile signals exhibited by underlying vessels
(e.g., hair, skin fold, shadow ridge), or may not contain a pulsatile components at all (e.g.,
clothing, naris, eyelid). In order to estimate the anatomical uniformity at a given location, the
image gradient was computed. In particular, given an image scene Λ whose individual regions
are xi , the “spatial prior” was computed as:

wspat
i
= exp

(−∇Λ2

αl

)
(14)

where ∇Λ is the gradient of image Λ. An inverse exponential model was used to emphasize
small values of ∇Λ (i.e., homogenous areas).

The individual priors for region i were combined to form the final region spectral-spatial
probabilistic prior:

Wi = inf

⎧⎪⎪⎨⎪⎪⎩
∏

k

wi [k] | Ni

⎫⎪⎪⎬⎪⎪⎭ (15)

where wi = {wharm
i
,wnmag

i
,wspat

i
}, and Ni is the neighborhood around region i. Here, a regional

first order statistic constraint was imposed on the priors in order to further enforce spatial cohe-
sion. Substituting this into Eq. (8) produces the estimate of the posterior distribution p̂(z|X ).

3. Results

3.1. Setup

Data were collected across 24 participants of varying age (9–60 years, (μ±σ) = 28.7±12.4) and
body compositions (fat% 30.0±7.9, muscle% 40.4±5.3, BMI 25.5±5.2 kg·m−2). Participants
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assumed a supine position throughout the study. A coded hemodynamic imaging (CHI) system
was positioned facing down at the participant at a distance of 1.5 m, comprising a monochro-
matic camera with NIR sensitivity (Point Grey GS3-U3-41C6NIR) and a diffuse halogen illu-
mination source (Lowel Rifa eX 44). To capture deep tissue penetration using NIR wavelengths,
and to minimize the effects of visible environmental illumination (e.g., flicker), an 850–1000 nm
optical bandpass filter was mounted in front of the camera lens. A video of each participant was
recorded at 60 fps, with 16 ms exposure time. The frames were downsampled using 6 × 6 block-
wise averaging. The ground truth PPG waveform was synchronously recorded using the Easy
Pulse photoplethysmography finger cuff [22]. Though the data were recorded at a slight angle,
the proposed method is independent of view angle due to region-wise pulsatility evaluation, and
thus can be used in different experimental setups.

We compared our method, henceforth called FusionPPG, with DistancePPG [17] and “Face-
MeanPPG”, where the face is tracked and the signal is extracted through framewise spatial
averaging. This method is commonly used in similar studies [4, 10, 13]. Many pulse extrac-
tion methods rely on processing individual color channels [10, 13, 14, 23], and were therefore
infeasible for this study (and infeasible in low-light settings, such as sleep studies). For our im-
plementation of FaceMeanPPG, we spatially averaged the area identified by Viola-Jones face
tracker [10]. Though DistancePPG was evaluated using a green LED in its original form [17],
the methods generalize to any single-channel imaging system, and thus could be used in this
NIR monochrome setup. In its original implementation, DistancePPG requires estimating the
true heart rate based on an averaging approach similar to FaceMeanPPG [17]. To generate opti-
mal results of the comparison algorithm, DistancePPG was provided with the ground-truth heart
rate (rather than their estimation method, which was found to fail in some cases). Since the par-
ticipants exhibited minimal movement, the frames were inherently temporally co-aligned, and
thus tracking was disabled for FaceMeanPPG and DistancePPG.

In order to evaluate and compare signal fidelity between methods, normalized spectral en-
tropy (H) and Pearson’s linear correlation coefficient (ρ) were computed for each extracted
signal:

H (ẑ) = −
N−1∑

k=0

Z[k] · log Z[k] (16)

where Z is the normalized spectral power for z according to Eq. (9), and

ρ(ẑ, y) =
|σẑ,y |
|σẑσy | (17)

where σẑ , σy are the standard deviation of the extracted signal and ground-truth signal respec-
tively, and σẑ,y is the covariance between the two signals. To account for pulse time differences
between the neck/head and finger, the maximum forward-sliding cross-correlation value within
a short temporal window was used.

The heart rate of a blood pulse waveform signal was computed in the temporal domain using
an autocorrelation scheme for increased temporal resolution [24]. Specifically, each waveform
was resampled at 200 Hz using cubic spline interpolation, and autocorrelation peaks were de-
tected and used to estimate heart rate:

ĤR = 60
Fs

Δt
(18)

where Fs is the sampling rate, and Δt is the time shift yielding peak autocorrelation response.
Hyperparameter optimization was performed to find optimal tuning parameters {αh , αq , αl }
using a grid search method with the following performance metric:

∑
k∈η Ẑk

1 −∑
k∈η Ẑk

(19)
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Fig. 3. Signals extracted from all 23 participants using the proposed FusionPPG method
(black), plotted against to the ground-truth FingerPPG waveform (gray, dotted).

where Ẑk is the k th Fourier coefficient of the estimated signal ẑ, and η is the set of coefficients
pertaining to the fundamental frequency and first harmonic of the ẑ. An exponential grid search
was performed over the space α ∈ [10−2 , 10], which when substituted into the weight term
exp(−x2/α) effectively changes the width of the inverse exponential, representing the space of
hyperparameters from strong weight bias (small width) to weak weight bias (large width). When
choosing the optimal hyperparameters, signals exhibiting physiologically unrealistic heart rates
were excluded.

One participant’s data were removed due to erroneous ground-truth waveform readings. The
study was approved by a University of Waterloo Research Ethics committee.

3.2. Data analysis

Figure 3 shows the signals extracted using the proposed fusion method compared to the ground-
truth finger waveform. The waveforms exhibited high temporal fidelity, and were highly cor-
related to the ground-truth waveforms. Some participants exhibited temporally offset signals
relative to the ground-truth PPG since the measured area (head) is closer to the source (heart)
than the PPG (finger). Furthermore, finger pulsatility may be affected by ambient conditions
such as temperature [25], changing the vascular resistance and thus the pulse arrival time. The
foot of each blood pulse waveform can be observed, signifying the precise time of the start of
ventricular contraction. The method failed on one participant due to high fat content (42.3%).

FusionPPG outperformed both comparison methods on the sample dataset. Figure 4 com-
pares the box plot of the proposed and comparison methods using correlation (higher is better)
and normalized spectral entropy (lower is better). FusionPPG attained statistically significantly
higher correlation to the ground-truth waveform than FaceMeanPPG (p < 0.001) and Distan-
cePPG (p < 0.001), signifying signals with higher temporal fidelity. FusionPPG also attained
statistically significantly lower normalized spectral entropy than FaceMeanPPG (p < 0.001)
and DistancePPG (p < 0.001), signifying more compact frequency components, consistent
with the quasi-periodic nature of a true blood pulse waveform. DistancePPG attained higher
correlation and lower entropy than FaceMeanPPG, consistent with previous findings [17].

FusionPPG was able to precisely estimate heart rate from the extracted waveforms. Figure 5
shows the correlation and Bland-Altman plots showing FusionPPG’s ability to extract precise
and accurate heart rate. The predicted heart rates were highly correlated to the ground-truth
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Fig. 4. Box plot comparison of the correlation (a) and normalized spectral entropy (b)
between the signals extracted using the proposed (FusionPPG) and the two comparison
(FaceMeanPPG, DistancePPG) methods. FusionPPG exhibited significantly higher correla-
tion and significantly lower spectral entropy (i.e., higher spectral compactness) compared
to FaceMeanPPG and DistancePPG. (∗∗∗statistically significant difference, p < 0.001)

Fig. 5. Correlation and Bland-Altman plots of the predicted heart rates using the extracted
blood pulse waveform signal. The predicted heart rates were highly correlated to the
ground-truth heart rate (r2 = 0.9952), and were in tight agreement (μ = −1.0 bpm, σ =
0.70 bpm). The outlier was omitted due to failed signal extraction.

heart rate (r2 = 0.9952), and were in tight agreement, with low mean error (μ = −1.0 bpm) and
low variance (σ = 0.70 bpm). The data were well represented within two standard deviations
from the mean. The outlier was omitted from this analysis due to failed signal extraction.

Figure 6 compares the extracted waveforms from four participants using the three methods
to the ground-truth waveform. The strongest waveforms (i.e., highest correlation) from Distan-
cePPG, FaceMeanPPG, and FusionPPG were shown. An important characteristic is the foot of
the waveform, which signifies the start of ventricular contraction. This foot was observed in
each case, whereas it was not easily discernible in either DistancePPG or FaceMeanPPG due to
the effects of averaging, resulting perhaps in a strong fundamental frequency which can predict
heart rate, but is affected by spurious irrelevant frequencies that corrupt the waveform shape.

Figure 6(d) shows a participant that experienced a cardiac arrhythmia. An irregular cardiac
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Fig. 6. Extracted waveforms from the proposed and comparison methods across four par-
ticipants. The selected waveforms were those that exhibited the strongest correlation from
DistancePPG (a), FaceMeanPPG (b), FusionPPG (c), and a participant with arrhythmia (d).
FusionPPG was able to extract strong waveforms across all participants, enabling the visual
assessment of a cardiac arrhythmia (at t = 6 s).

Fig. 7. Typical pulsatility distribution based on spectral-spatial fusion. An original frame (a)
is used to compute and overlay the probabilistic pulsatility distribution (b). The strongest
pulsing was often observed in the neck region, contributing strongly to the blood pulse
waveform extraction.

contraction was observed at t = 6 s, resulting in a delayed contraction. Such cases cannot
be easily observed using standard heart rate analysis in the frequency domain. However, the
irregular heartbeat and delayed follow-up contraction was observed in FusionPPG’s waveform,
whereas it was not readily apparent in FaceMeanPPG or DistancePPG. This demonstrates the
important of temporal signal fidelity to assess irregular cardiac events that deviate from typical
waveforms.

4. Discussion

In this study, the most pulsatile areas were often found in the neck region. Figure 7 shows
a typical computed pulsatility distribution overlayed onto the original frame, showing strong
pulsing in the neck4. The neck contains important vascular pathways, including the carotid
arteries, which are major vessels that are closely connected to the heart and are close to the
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surface compared to other major arteries in the body. Pulsatile information in the face is more
subdued, since the small arteries and arterioles are found further down the vascular tree. Thus,
many existing methods that extract signals from the face may be at a disadvantage, and miss the
rich information present in the neck.

The extraction method failed on the participant who had the highest fat % of the sample.
Skin folds and thick tissue layers contributed to the inability to extract a signal with any of the
three methods evaluated in this study. Many existing studies do not provide participant body
composition, which is an important parameter when assessing signal strength.

Traditional heart rate variability is assessed through the RR peak intervals using an elec-
trocardiogram. However, similar timing differences can be observed and quantified using the
blood pulse waveform. An important part of this waveform is the blood pulse foot, which is
the minimum point just prior to inflection due to the oncoming blood pulse. The blood pulse
is ejected from the heart due to left ventricular contraction, which is directly controlled by the
electrical signals governing the heart mechanics. The timing difference between the ECG’s R
peak and the PPG’s foot is the pulse transit time. Thus, timing differences between the blood
pulse feet indicate timing differences in the heart [26]. An important characteristic that is not
often discussed in PPGI studies is its ability to extract and assess abnormal waveforms (e.g., ar-
rhythmia). In order to be useful as a health monitoring system, a PPGI system must not directly
or indirectly assume normal waveforms. This was apparent in the arrhythmia case (Fig. 6(d)),
where FusionPPG’s waveform was able to temporally convey an abnormal cardiac event. During
validation, emphasis should be placed on detected abnormal as well as normal waveforms.

Many existing methods, including DistancePPG and FaceMeanPPG, require tracking and/or
segmenting the individual’s face. However, it may be beneficial to assess pulsatility in areas
other than the face (e.g., arm, hand, leg, foot). These methods will fail at this task since no face
will be detected. In contrast, FusionPPG does not make any a priori assumptions about anatom-
ical locations, and may therefore be used to assess pulsatility at other anatomical locations in
future work.

Though the scope of the current study was limited to participants in supine position, motion
artifacts may be problematic in other environmental conditions (e.g., exercising, ambient-based
monitoring). In such cases, a motion compensation algorithm should be applied prior to com-
puting the spectral-spatial probabilistic maps such that frames are spatially aligned. Existing
single-wavelength PPGI motion compensation methods can be used for motion compensation
during head movements [10, 15, 17] and exercise [4]. Furthermore, though validation was per-
formed using the NIR spectra, the proposed method can be used by systems of any spectral
content, as long as photon penetration depth and hemoglobin absorption is favorable for blood
pulse identification.

Some existing color-based methods exist for automated region selection [6–9], which show
increased accuracy when selecting image regions in an informed manner. The proposed method
provides several advantages over these color-based methods. First, FusionPPG does not rely on
multispectral color data acquisition, which may be problematic in low-light environment, imag-
ing in high melanin density tissues [17], and imaging systems that use near infrared illumination
sources for increased photon depth of penetration (e.g., for deep arterial analysis) [27]. Second,
FusionPPG does not assume a cohesive region of interest. By treating each location as quasi-
independent, anatomically irrelevant areas (e.g., hair, shadows) are excluded. Third, FusionPPG
does not require skin tone calibration or prediction. Near infrared light is particularly suitable for
analysis of various skin tones due to the decreased melanin absorption at these wavelengths [28].
Though visible light exhibits higher absorption in the visible than near infrared spectrum, one
must also consider the effect of scatter and reduced absorption on photon attenuation. Primarily
forward scattering photons that do not become attenuated before emitting from the tissue enable
deeper tissue analysis [28] where major arteries reside. Though the fundamental nature of the
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PPG signal is still unknown [1,12], deeper probing and physiological prior models increase the
probability of hemodynamic-induced signal fluctuations rather than motion.

5. Conclusions

We have proposed a probabilistic signal fusion framework, FusionPPG, for extracting a blood
pulse waveform signal from a scene using physiologically derived prior information. This was
accomplished by posing the problem as a Bayesian problem and modeling the posterior dis-
tribution as a novel probabilistic pulsatility model that incorporated spectral and spatial priors
derived from blood pulse waveform physiology. Results showed signals with strong temporal
fidelity. The proposed method’s improvement over the comparison methods was statistically
significant (p < 0.001) by assessing correlation and normalized spectral entropy. A cardiac ar-
rhythmia was visually identifiable in the FusionPPG’s waveform, showing future promise for
cardiac illness identification. The model has presented such that it allows for future extensions
based on this general theoretical framework
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